Darstellung von Zahlen

Aus IV1
Version vom 10. August 2009, 17:32 Uhr von Verbod (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „== Binärdarstellung == Die Binärdarstellung von Zahlen schöpft hingegen alle möglichen Bitkombinationen aus: So lassen sich z.B. in 16 Bit alle ganzen Zahlen...“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Binärdarstellung

Die Binärdarstellung von Zahlen schöpft hingegen alle möglichen Bitkombinationen aus: So lassen sich z.B. in 16 Bit alle ganzen Zahlen von 0 bis 65535 bzw. (wenn ein Vorzeichen verwendet wird) von -32768 bis +32767 darstellen. Bei 32 Bit wären das die ganzen Zahlen von 0 bis 4294967295 bzw. -2147483648 bis 2147483647.

Gleitkommadarstellung

Sollen Zahlen mit Nachkommastellen (oder auch sehr große bzw. kleine Zahlen) dargestellt werden, bedient man sich eines ähnlichen „Tricks” wie die „wissenschaftliche Notation” von Zahlen (z.B. -2,6410·108; bzw. auf dem Taschenrechner-Display: -2.64E+8): Die Zahl wird in eine Mantisse (in diesem Beispiel -2,64) sowie einen Exponenten (im Beispiel: +8) zu einer vorher festgelegten Basis (im Beispiel: 10) zerlegt. Für die Darstellung der Mantisse (die soweit „normalisiert” wird, dass sich das Dezimalkomma an einer bestimmten Stelle befindet, sodass eine „ganzzahlige” Darstellung möglich ist) und des Exponenten werden dann jeweils eine festgelegte Anzahl von Bits verwendet, wodurch einerseits der Wertebereich, andererseits auch die Genauigkeit der darstellbaren Zahlen festgelegt ist (diese Darstellung wird als Gleitkommadarstellung von Zahlen bezeichnet). Die im PC-Bereich gängigen Gleitkommaformate mitsamt ihren wichtigsten Eigenschaften sind in nachstehender Tabelle dargestellt:


Format "short" "long" "extended"
Größe [Bits] 32 64 80
Größe [Bytes] 4 8 10
kleinster darstellbarer Wert ≈1,175·10-38 ≈2,225·10-308 ≈3,362·10-4932
größter darstellbarer Wert ≈3,403·10+38 ≈1,798·10+308 ≈1,190·10+4932
Genauigkeit ≈7 ≈16 ≈19


Besondere Aufmerksamkeit verdient die Tabellenzeile "Genauigkeit": Diese besagt nicht, dass alle Zahlen und Rechenergebnisse exakt darstellbar sind, sofern sie sich auf die angegebenen Dezimalstellen beschränken, sondern lediglich, dass sich das Rechenergebnis im Computer vom tatsächlichen Rechenergebnis maximal in der Größenordnung der angegebenen Dezimalstelle unterscheiden kann. Es kommt also zu Ungenauigkeiten aufgrund der Zahlendarstellung, die sich leider durch weitere Rechenoperationen aufschaukeln und das Gesamtergebnis z.T. signifikant verfälschen können (besonders anfällig hierfür sind Vergleichsoperationen und Rundungsfunktionen wie z.B. GANZZAHL() in Microsoft EXCEL).